Controlled formation of closed-edge nanopores in graphene.
نویسندگان
چکیده
Dangling bonds at the edge of a nanopore in monolayer graphene make it susceptible to back-filling at low temperatures from atmospheric hydrocarbons, leading to potential instability for nanopore applications, such as DNA sequencing. We show that closed edge nanopores in bilayer graphene are robust to back-filling under atmospheric conditions for days. A controlled method for closed edge nanopore formation starting from monolayer graphene is reported using an in situ heating holder and electron beam irradiation within an aberration-corrected transmission electron microscopy. Tailoring of closed-edge nanopore sizes is demonstrated from 1.4-7.4 nm. These results should provide mechanisms for improving the stability of nanopores in graphene for a wide range of applications involving mass transport.
منابع مشابه
Controlled Formation of Closed-Edge Nanopores in Graphene Supporting Information
S1. Binding surface adsorbates to graphene by electron beam irradiation The low magnification image shown in figure S1a demonstrates the contrast between electron beam irradiated area and pristine area. Figure S1(b) and (c) are magnified images of the yellow and blue boxed regions respectively. The darker contrast dots are the inorganic nanocrystals on the surface of graphene. Panel c shows the...
متن کاملControlled Shrinking of Nanopores in Single Layer Graphene Using Electron Beam Irradiation
This paper reports electron beam induced shrinking of nanopores drilled in free-standing graphene. Nanopores with diameters in the range of 40-60 nm were easily shrunk down to 2 nm and even completely closed by exposure to low beam current densities in a transmission electron microscope (TEM). This method can be used to fine-tune nanopore shape and size, as well as to heal secondary defects and...
متن کاملNanostructuring graphene by dense electronic excitation.
The ability to manufacture tailored graphene nanostructures is a key factor to fully exploit its enormous technological potential. We have investigated nanostructures created in graphene by swift heavy ion induced folding. For our experiments, single layers of graphene exfoliated on various substrates and freestanding graphene have been irradiated and analyzed by atomic force and high resolutio...
متن کاملGeometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets
Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...
متن کاملClosed-form Solution of Dynamic Displacement for SLGS Under Moving the Nanoparticle on Visco-Pasternak Foundation
In this paper, forced vibration analysis of a single-layered graphene sheet (SLGS) under moving a nanoparticle is carried out using the non-local elasticity theory of orthotropic plate. The SLGS under moving the nanoparticle is placed in the elastic and viscoelastic foundation which are simulated as a Pasternak and Visco-Pasternak medium, respectively. Movement of the nanoparticle is considered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 27 شماره
صفحات -
تاریخ انتشار 2015